门电路构成的晶体并联谐振振荡器

发布于:2006/8/29 15:18:57 | 1320 次阅读

门电路构成的晶体并联谐振振荡器

    石英晶体在外加电压的作用下,它会产生一个压电效应,石英晶体产生机械振动,当外加电压的频率与晶体固有振荡频率相同时,晶体的机械振幅,产生的交变电场也就,形成压电谐振。
    从石英晶体的电抗频率特性可知,它有两个相当接近的谐振额率,一个串联谐振频率,一个并联谐振频率,当石英晶体处于串联谐振时电抗最小,当处于并联谐振时电抗,当处于这两个频率范围之间时,石英晶体呈电感性,当游离这两个频率之外时,石英晶体呈容性。

    图A是工作于串联谐振状态的TTL门电路振荡器(摘Protel99SE附带例),当电路频率为串联谐振频率时,晶体的等效电抗接近零(发生串联谐振),串联谐振频率信号最容易通过N1、N2闭环回路,这个频率信号通过两级反相后形成反馈振荡,晶体同时也担任着选频作用。也就是说在工作于串联谐振状态的振荡电路,它的频率取决于晶体本身具有的频率参数。

    图B是工作于并联谐振状态的CMOS门电路振荡器,晶体等效一个电感(晶体工作于串联谐振频率与并联谐振频率之间时,晶体呈电感性)与外接的电容构成三点式LC振荡器,通过外接的电容可对频率进行微调。
    电阻R接在反相器N3的输入与输出端,其目的是将N3偏置在线性放大区,构成放大器。
    从晶体X的两端看C1、C2(图B),它们是通过GND串联成一个电容(这个串联电容(Cx)可以由公式《Cx=C1C2/C1+C2》求出),X与串联电容构成一个并联共振电路(为了方便,我这里只简单的将晶体等效为电感性),从电容一分为二的电路形态上看,晶体和电容C1、C2也是构成一个π型选频网络反馈通道(也称π型谐振电路,见图B2、3)。
    N3放大器的输出端信号通过X、C1、C2构成的π型谐振电路返回N3放大器的输入端,形成反馈振荡,由此可见它的振荡频率是由π型谐振电路所决定的(当然,主要还是晶体所决定)。
    也是由于N3的输出端连接着X、C1、C2π型谐振电路,而且输出信号近似于正弦波,为防止负载电路对振荡电路的干扰和提高带载能力,N3输出信号需再通过N4的缓冲、放大整形接到负载。
    在晶体X与串联电容Cx构成的并联共振电路里,Cx的损耗电阻大时,电路的Q值必然下降,同时会使晶体的特性恶化,引起Cx这个损耗电阻增大的因素是来自多方面的,但电阻R起到较大的作用,通常在提供足够激励的情况下,尽可能增大R的电阻值或在N3输出端与选频网络间(即BC间)串入一个电阻,从C2看阻抗也加大,一般电阻R的取值为1M~30M。
    另,在C1、C2之间的连接也要引起注意,连接线粗而短,不单可以减少产生损耗,而且还能防止混入干扰源而干扰了振荡器的正常工作。
    晶体外壳所标注的频率,既不是串联谐振频率也不是并联谐振频率,而是在外接负载电容时测定的频率,数值界乎于串联谐振频率与并联谐振频率之间。
    这也就是说,我们在应用晶体时,负载电容(Cx)的值是直接由厂家所提供的,我们无需再去计算。
    在要求不高的实际应用中,我们为了设计方便,一般可以将负载电容Cx分拆为1:1,即C1=C2(公式见上),在要求较高的情况下,这样的方便显然是不合理的,首先,C1应减去门电路的输入平均电容和各项因素产生的离散电容(估算),同理,C2也应减去各项因素产生的离散电容(估算),然而,由于元件的离散性和估算存在着偏差,频率依然不是很准确,我们可适当减小C1或C2的值再并个微调电容加以调整。
    要得到较的频率,电容除了需选用损耗小、特性好的产品外,PCB布板和各元件的温度系数也很重要。
    以上是我的理解和一点小心得,如有不对,请大家斧正。

参与讨论
后参与讨论

//评论区

推荐阅读

TME中国介绍

  TME-TransferMultisortElektronikSp.zo.o.  深圳特美意电子贸易有限公司  是波兰TransferMultisortElektronikSp.zo.o.公司在中国设立的子公司。  2018年在深圳成立,是TME公司在亚洲的第一个子公司,主要负责TME在中国大陆、中国香港和中国台湾市场的业务及市场拓展。  TME波兰总公司始创于1989年  初是两兄弟开设的电

0215jiejie | 发布于:2024-12-17 0评论 0赞

智能网联汽车国际标准法规协调专家组(HEAG)召开工作会议

近年来智能网联汽车快速发展,新技术不断涌现,与相关产业融合度持续提升,正在推动全球汽车产业发生深刻变革。为应对此种形势,欧、美、日等汽车工业发达国家和地区都加大了智能网联汽车的国际标准法规协调的参与力度,在联合国世界车辆法规论坛(UN/WP.29)和国际标准化组织(ISO)层面,智能网联汽车相关国际标准法规协调活动正快速推进。 为更有效地支撑上述组织的国际标准法规协调活动,2017年全国汽车标准

0215jiejie | 发布于:2022-12-01 0评论 0赞

苹果推出搭载M2芯片的新款iPad Pro 799美元起售

据苹果官网,苹果推出搭载M2芯片的新款iPadPro。 11英寸wifi版起售价为799美元,wifi+蜂窝网络版起售价为999美元;12.9英寸wifi版起售价为1099美元,wifi+蜂窝网络版起售价为1299美元。

0215jiejie | 发布于:2022-10-19 0评论 0赞

新能源汽车领衔 “中国智造”加速登陆欧洲市场

全球五大车展之一巴黎车展时隔四年再度启幕。在这场被视为“全球汽车行业风向标”的盛会上,国内外汽车品牌云集,长城汽车、比亚迪等再次领衔中国汽车出海。 长城汽车欧洲区域总裁孟祥军表示:“欧洲是长城汽车最重要的海外市场之一,巴黎车展是长城汽车向欧洲市场展示GWM品牌和产品的最佳机会。长城汽车正在研究汽车行业碳排放的整个生命周期,到2025年,将推出50多款新能源产品,全力支持可再生能源使用,为全球用户

0215jiejie | 发布于:2022-10-19 0评论 0赞

严监管时代来临,电子烟“通配”大战走向何方?

针对通配烟弹厂商的一系列诉讼的结果,将对生产通配烟弹的品牌未来在电子烟行业的发展产生深远影响。 10月1日,《电子烟强制性国家标准》正式实施,中国电子烟监管全面生效。而在电子烟行业进入规范化、法治化阶段前夕,一场围绕着通配烟弹的争论在行业里发酵。 “通配”是电子烟从业者约定俗成的概念。换弹式电子烟由烟杆和烟弹组成,“通配”烟弹指的是非品牌商生产、可与品牌烟杆匹配使用的烟弹。多位业内人士表示,被

0215jiejie | 发布于:2022-10-19 0评论 0赞

Bourns 全新大功率分流电阻器

采用金属感应引脚,专用于大电流应用中进行精确测量 全新分流电阻器专为电池管理系统、大电流工业控制和电动汽车充电站 提供高可靠性、高成本效益的解决方案 美国柏恩Bourns全球知名电子组件领导制造供货商,宣布新增12款CSM2F系列功率分流电阻器,扩展其产品组合。全新系列采用铆接通孔金属传感引脚,可满足大电流应用中对电压测试点精确定位日益增长的需求。最新型Bourns?CSM2F系列分流电阻器

0215jiejie | 发布于:2022-10-18 0评论 0赞

请尊重元宇宙“这个筐”

元宇宙是个筐,啥都往里装,但区别在于有的像聚宝盆,有的像垃圾桶。国庆假期刚结束,中青宝“90后”董事长李逸伦便亲自上阵,玩起了元宇宙婚礼。靠着老板首秀和代言,中青宝顺势推出“MetaLove元囍”App,正式进军元宇宙婚礼赛道。 就产品而言,如同其他元宇宙产品,李逸伦的元宇宙婚礼“新奇与吐槽齐飞”:有人说是有趣的尝试,有人则认为像QQ炫舞结婚系统。要知道,QQ炫舞是一款推出了十余年的老游戏。

0215jiejie | 发布于:2022-10-13 0评论 0赞

边缘计算:突围商业模式痛点

截至8月末,中国5G基站总数达210.2万个,中国5G发展已经进入下半场。随着5G加速融入千行百业,互动直播、vCDN、安防监控等场景率先大规模落地,车联网、云游戏、工业互联网、智慧园区、智慧物流等场景也快速走向成熟,这些更大流量、更低时延、更高性能的场景涌现,对边缘计算的刚性需求势必爆发。 GrandViewResearch预测,即使在新型冠状病毒肺炎疫情肆虐全球的背景下,边缘计算和5G网络市

0215jiejie | 发布于:2022-10-13 0评论 0赞

商务部回应美商务部升级半导体等领域对华出口管制并调整出口管制“未经验证清单”

商务部新闻发言人10日就美商务部升级半导体等领域对华出口管制并调整出口管制“未经验证清单”应询答记者问。 有记者问:近日,美国商务部在半导体制造和先进计算等领域对华升级出口管制措施。同时,在将9家中国实体移出“未经验证清单”过程中,又将31家中国实体列入,请问中方对此有何回应? 对此,商务部新闻发言人回应称,中方注意到相关情况。首先,通过中美双方前一阶段共同努力,9家中国实体zui终

0215jiejie | 发布于:2022-10-13 0评论 0赞

TCL华星官宣与奔驰合作:推出全球首款横贯A柱的车载显示屏

今年1月,奔驰带来了VISIONEQSS概念车,其中控台采用了一块完全无缝的47.5英寸曲面显示屏,横贯整个A柱,令人印象深刻。今天,TCL华星正式官宣与奔驰达成合作,并认领了VISIONEQSS上这块全球首款横贯整个A柱曲面的车载显示屏。 根据TCL介绍,这款显示屏采用了完全无缝的超薄一体化设计,将仪表盘、中控与副驾娱乐显示融为一体,并能够与3D实时导航系统相辅相成。 同时,这块显示屏还采用

0215jiejie | 发布于:2022-10-12 0评论 0赞